您现在的位置是: 首页 > 数码新闻 数码新闻
8500gt显卡驱动_8500gt显卡驱动版
tamoadmin 2024-08-23 人已围观
简介1.电脑显卡的性能从哪些参数可以了解啊?2.英雄连画面设置3.显卡时好时坏是怎么回事?4.AMD Radeon HD 6700 Series 显卡支持2k显示屏吗?5.如何计算cpu,主板,显卡,硬盘,内存条功率?6.NVIDIA显卡的所有型号!谢谢!7.电脑显卡作用是什么个人看法,也许对你有帮助。DX10和DX9最大的区别DX10是为适应多核而开发的,包括显卡的多核。DX10和DX10.1都是v
1.电脑显卡的性能从哪些参数可以了解啊?
2.英雄连画面设置
3.显卡时好时坏是怎么回事?
4.AMD Radeon HD 6700 Series 显卡支持2k显示屏吗?
5.如何计算cpu,主板,显卡,硬盘,内存条功率?
6.NVIDIA显卡的所有型号!谢谢!
7.电脑显卡作用是什么
个人看法,也许对你有帮助。
DX10和DX9最大的区别DX10是为适应多核而开发的,包括显卡的多核。DX10和DX10.1都是vista下的产物。WIN7默认都是DX11。不过暂时DX是向下兼容,你的显卡支持DX9,也是可以的。如果你DX8时代显卡,WIN7你也装不上,肯定不兼容的。所以这些不必深究。总得来说DX11好用是毋庸置疑的。
如果在有限的下,比如你的配置运行WIN7只是勉强应对,比如内存1g,显卡都是很老的,比如在8500GT之前,因为8500GT是DX10的起点,那时候刚开始推出这个DX。你就用XP说不定玩游戏更好一点,因为你有限的都用在系统上了,如果更高的配置,兼容性(游戏是否和系统兼容,不出现不支持现象)再没问题的话,WIN7玩游戏无疑是你的最佳选择。你可以看一下具体。
下面是一些专业的说法。
几何渲染单元
图元在层次上比顶点高一级,它由一个或多个顶点构成。由单个顶点组成的图元被 称为“点”,由两个顶点组成的图元被称为“线”,由三个顶点组成的图元被称为“三角形”。几何渲染单元支持点、线、三角形、带邻接点的线、带邻接点的三角形等多种图元类型,它一次最多可处理六个顶点。借助丰富的图元类型支持,几何渲染单元可以让GPU提供更精细的模型细节。 几何渲染单元赋予GPU自行创造新几何物体、为场景添加内容的神奇能力。灵活的处理能力使GPU更加通用化,以往很多必须倚靠CPU才能完成的工作,现在完全可交由GPU处理。如此一来,CPU就有更多时间处理人工智能、寻址等工作。更令人惊喜的是,几何渲染单元还让物理运算的加入变得更简单,DirectX 10可创建具备物理特性的盒子、模拟刚性物体,物理运算有望在它的带领下逐渐走向普及。可以预见,借助几何渲染单元这一武器,显卡性能将产生质的飞跃,我们也将体验到速度更流畅、画面更精美、情节更细致的游戏。
改进的API和驱动功效 我们知道,每一个游戏角色、武器和景物在3D程序中都是一个Object(对象),而每一帧游戏画面就可能出现数百个Object。在显卡工作时,每一个Object都要从应用程序传输到API接口,然后通过显卡驱动程序到达显卡。在现有的DirectX体系中,任何一个Object进行操作或者渲染,都会导致系统的额外消耗,游戏的Object越多,所耗费的传递时间就越长,造成的额外消耗也就越多。据统计,现有的DirectX 9图形芯片在工作时,只有60%的性能用于运算3D程序,其余40%的运算能力被白白浪费了! 为了改变这一现状,DirectX 10在渲染程序中用了动态索引功能,Object被驱动程序自动加载,数据可以分类并连续输入,这样一来,单次传输的数据量就增加了,从而大大降低了额外耗费的时间。通过引入新的API及驱动程序,DirectX 10将图形芯片的执行效能提升至80%。在不增加显卡硬件成本的前提下,显卡性能得到了大幅提升。
并行引擎支持技术 为了提升多块显卡协作的工作效率,微软在DirectX 10中提出了“Parallel Engine Support(并行引擎支持)”的概念,它可以预先把两个GPU需要的数据分别传输到两块对应的GPU当中,帧渲染将完全由驱动控制和调配,两块显卡的工作强度可以获得很好的平衡。而在目前主从卡的运作模式中,主卡要对从卡框架、渲染数量进行判定,而引入并行引擎支持技术后,主从卡的概念将消失,两块甚至多块显卡的协作威力将充分体现。统一渲染架构 DirectX 10最大的革新就是统一渲染架构(Unified Shader Architecture)。目前各类图形硬件和API均用分离渲染架构,即顶点渲染和像素渲染各自独立进行,前者的任务是构建出含三维坐标信息的多边形顶点,后者则是将这些顶点从三维转换为二维,这样便可以通过视觉欺骗在屏幕上显示出“三维”的场景。与此对应,GPU中也有专门的顶点渲染单元和像素渲染单元来分别执行这两项工作(由于工作量不同,这两种渲染单元的数量不相等,顶点渲染单元通常只有像素渲染单元的1/3~1/2)。在过去几年中,这种分离式设计对计算机图形领域的发展做出了一定的贡献。 不过,微软认为这种分离渲染架构不够灵活,不同的GPU,其像素渲染单元和顶点渲染单元的比例不一样,软件开发人员在编写代码时必须考虑这个比例,这就大大限制了开发人员自由发挥的空间。另外,不同的图形游戏或软件对像素渲染和顶点渲染的需求不一样,导致GPU的运算得不到充分利用。为此,微软在DirectX 10中提出了统一渲染架构的思想:在相同物理类型的渲染单元上执行不同类型的渲染程序。换句话说,只用一种渲染单元,让它既能完成顶点渲染,也能完成像素渲染,甚至还能实现几何渲染。这样一来,渲染单元可以得到最大程度的利用,减少了闲置的情形。目前,Xbox 360的显示芯片Xenos就用了统一渲染架构,该芯片一共有48个渲染单元,它们可全部用于顶点渲染或像素渲染,没有固定分配比例。此外,ATI也打算在新一代的R600芯片中用统一渲染架构。
当然,统一渲染架构也并非完美无瑕。相对顶点渲染来说,像素渲染将面临大规模使用纹理所带来的材质延迟,这是统一渲染架构急待解决的问题。不过有一点可以肯定,在微软的大力推动下,统一渲染架构是大势所趋。
适应Vista系统
除统一渲染架构外,DirectX 10的另一大特色就是与Windows Vista紧密结合,Vista系统将调用GPU来渲染Aero Glass 3D界面,这样图形API就与操作系统核心高度整合在一起。举个例子,当我们点击应用程序时,CPU将立刻收到驱动程序的指令,而软件界面渲染指令则通过DirectX 10直接传送给GPU,这样,Vista就能与CPU和GPU同时沟通,让3D界面渲染工作变得更高效。 相比之下,在DirectX 9环境中,Vista(软件)界面的渲染工作就要“迟钝”一些了:用户点击运行某个软件,Vista将相应的指令发送给CPU,要求CPU进行后续处理;CPU接到运行指令的同时向GPU发出请求,要求GPU在屏幕上渲染出界面。GPU(支持DirectX 9)识别Vista界面渲染指令后完成相应的工作(注意:DirectX 8显卡无法完成渲染工作,必须让CPU通过软件模拟来实现,此时系统速度非常缓慢)。换句话说,在“DirectX 9显卡+Vista”的平台中,CPU还是核心,GPU必须在CPU的控制下工作,而Vista系统也必须通过CPU来调用GPU的。 DirectX9还有一个不足之处,那就是它只能进行单任务渲染,即无法同时完成两个场景的渲染工作(如无法在运行游戏的同时为软件渲染3D界面),应用范围受到极大的限制。而DirectX 10则允许GPU同时渲染多个不相关的3D场景,工作效率大为提高。因此,尽管DirectX 9显卡大都能驱动Vista华丽的Aero Glass视觉模式,但很多方面受到了限制,只有DirectX 10显卡才是Vista的理想“伴侣”。 可惜,微软决定DirectX10不会“下嫁”WindowsXP,想体验DX10特效只能依赖Vista。
Shader Model 4.0
从DirectX 8开始,Shader Model(渲染单元模式)在DirectX体系中的地位就日趋重要,其版本和渲染单元的规格也成为了决定显卡性能高低的关键因素。随着DirectX 10时代的到来,Shader Model也升级到了4.0版本。与眼下如日中天的Shader Model 3.0(以下简称SM 3.0)相比,Shader Model 4.0(以下简称SM 4.0)有哪些可喜的变化? 首先,SM4.0中的指令长度被提升到大于64K(即64×)的水平,这是SM 3.0规格(渲染指令长度允许大于512)的128倍。显然,SM 4.0在为渲染出**级别的游戏画面做准备。由于渲染指令长度大幅提升,SM 4.0中相应的寄存器规格也有所增强,如Constant寄存器用16×4096阵列、tmp寄存器则有4096个、input寄存器用16/32规格等,上述指标都比以前的DirectX有明显的改进。其次,SM 4.0在纹理数量方面也有提高。DirectX 10允许程序员在渲染物体时使用128个纹理,而DirectX 9只提供4/16规格,更多的纹理意味着物体表面精度更接近真实,游戏开发者拥有更广泛的选择。 从上述情况不难看出,DirectX 10在性能方面的提升是巨大的,它将进一步解放CPU的。当然,我们也必须看到,DirectX 10对硬件(尤其是显卡)的要求也更为苛刻,GPU在设计上也将更加复杂。
电脑显卡的性能从哪些参数可以了解啊?
显卡是个人计算机基础的组成部分之一,将计算机系统需要的显示信息进行转换驱动显示器,并向显示器提供逐行或隔行扫描信号,控制显示器的正确显示,是连接显示器和个人计算机主板的重要组件,是“人机”的重要设备之一,其内置的并行计算能力现阶段也用于深度学习等运算。
英雄连画面设置
显卡的性能取决于渲染管线的数量,核心架构,渲染管线的执行效率,顶点着色单元以及显卡核心频率和显存频率.
以下详解:
顶点着色单元
顶点着色单元是显示芯片内部用来处理顶点(Vertex)信息并完成着色工作的并行处理单元。顶点着色单元决定了显卡的三角形处理和生成能力,所以也是衡量显示芯片性能特别是3D性能的重要参数。
顶点(Vertex)是图形学中的最基本元素,在三维空间中,每个顶点都拥有自己的坐标和颜色值等参数,三个顶点可以构成成一个三角形,而显卡所最终生成的立体画面则是由数量繁多的三角形构成的,而三角形数量的多少就决定了画面质量的高低,画面越真实越精美,就越需要数量更多的三角形来构成。顶点着色单元就是处理这些信息然后再送给像素渲染单元完成最后的贴图工作,最后再输出到显示器就成为我们所看到的3D画面。而显卡的顶点处理能力不足,就会导致要么降低画质,要么降低速度。
在相同的显示核心下,顶点着色单元的数量就决定了显卡的性能高低,数量越多也就意味着性能越高,例如具有6个顶点着色单元的GeForce 6800GT就要比只具有5个顶点着色单元的GeForce 6800性能高:但在不同的显示核心架构下顶点着色单元的数量多则并不一定就意味着性能越高,这还要取决于顶点着色单元的效率以及显卡的其它参数,例如具有4个顶点着色单元的Radeon 9800Pro其性能还不如只具有3个顶点着色单元的GeForce 6600GT。
渲染管线
渲染管线也称为渲染流水线,是显示芯片内部处理图形信号相互独立的并行处理单元。在某种程度上可以把渲染管线比喻为工厂里面常见的各种生产流水线,工厂里的生产流水线是为了提高产品的生产能力和效率,而渲染管线则是提高显卡的工作能力和效率。
渲染管线的数量一般是以 像素渲染流水线的数量×每管线的纹理单元数量 来表示。例如,GeForce 6800Ultra的渲染管线是16×1,就表示其具有16条像素渲染流水线,每管线具有1个纹理单元;GeForce4 MX440的渲染管线是2×2,就表示其具有2条像素渲染流水线,每管线具有2个纹理单元等等,其余表示方式以此类推。
渲染管线的数量是决定显示芯片性能和档次的最重要的参数之一,在相同的显卡核心频率下,更多的渲染管线也就意味着更大的像素填充率和纹理填充率,从显卡的渲染管线数量上可以大致判断出显卡的性能高低档次。但显卡性能并不仅仅只是取决于渲染管线的数量,同时还取决于显示核心架构、渲染管线的的执行效率、顶点着色单元的数量以及显卡的核心频率和显存频率等等方面。一般来说在相同的显示核心架构下,渲染管线越多也就意味着性能越高,例如16×1架构的GeForce 6800GT其性能要强于12×1架构的GeForce 6800,就象工厂里的用相同技术的2条生产流水线的生产能力和效率要强于1条生产流水线那样;而在不同的显示核心架构下,渲染管线的数量多就并不意味着性能更好,例如4×2架构的GeForce2 GTS其性能就不如2×2架构的GeForce4 MX440,就象工厂里的用了先进技术的1条流水线的生产能力和效率反而还要强于只用了老技术的2条生产流水线那样。
开发代号
所谓开发代号就是显示芯片制造商为了便于显示芯片在设计、生产、销售方面的管理和驱动架构的统一而对一个系列的显示芯片给出的相应的基本的代号。不同的显示芯片都有相应的开发代号。
开发代号最突出的作用是降低显示芯片制造商的成本、丰富产品线以及实现驱动程序的统一。一般来说,显示芯片制造商可以利用一个基本开发代号再通过控制渲染管线数量、顶点着色单元数量、显存类型、显存位宽、核心和显存频率、所支持的技术特性等方面来衍生出一系列的显示芯片来满足不同的性能、价格、市场等不同的定位,还可以把制造过程中具有部分瑕疵的高端显示芯片产品通过屏蔽管线等方法处理成为完全合格的相应低端的显示芯片产品出售,从而大幅度降低设计和制造的难度和成本,丰富自己的产品线。例如,NVIDIA从NV40就先后衍生出了面向零售市场的Geforce 6800、Geforce 6800GT、Geforce 6800Ultra、Geforce 6800LE、Geforce 6800XT以及面向OEM市场的Geforce 6800GTO等显示芯片产品;而ATI也从R300衍生出了Radeon 00、Radeon 00Pro、Radeon 9500、Radeon 9500Pro等显示芯片产品。在驱动程序方面,同一种开发代号的显示芯片可以使用相同的驱动程序,这为显示芯片制造商编写驱动程序以及消费者使用显卡都提供了方便。
同一种开发代号的显示芯片的渲染架构以及所支持的技术特性是基本上相同的,而且所用的制程也相同,所以开发代号是判断显卡性能和档次的重要参数。
制造工艺
显示芯片的制造工艺与CPU一样,也是用微米来衡量其加工精度的。制造工艺的提高,意味着显示芯片的体积将更小、集成度更高,可以容纳更多的晶体管,性能会更加强大,功耗也会降低。
和中央处理器一样,显示卡的核心芯片,也是在硅晶片上制成的。用更高的制造工艺,对于显示核心频率和显示卡集成度的提高都是至关重要的。而且重要的是制程工艺的提高可以有效的降低显卡芯片的生产成本。目前新型显示芯片的制造工艺已经达到0.11微米。
微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。芯片制造工艺在1995年以后,从0.5微米、0.35微米、0.25微米、0.18微米、0.15微米、0.13微米一直发展到当前的0.11微米。而更为先进的0.09微米制造工艺的显卡产品也已在显卡厂商的发展规划中。
制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。而0.13微米工艺的好处非常明显,不但可以得到转换速度更快的晶体管,还能产出更小的芯片。更小的晶体管能减少耗电量及产品体积,效能也相对提高,而且也降低功耗和发热量。
技术新名词解释:
1. CINEFX:
nVIDIA是个善于营造新概念和新词汇的图形芯片公司,“CineFX”中的“Cine”是“Cinematic”(**般的)的前四个字母,在CineFX引擎刚问世之际,nVIDIA不止一次地在其技术文档中出现“实时(real time)”和“**般渲染效果(cinematic rendering)”等字样,CineFX就是为了实现**般的实时特效而产生的。
2. Intellisample
即“智能样”,包括了色彩压缩引擎、动态伽玛矫正、自适应各项异性过滤以及智能防锯齿等功能。
3. FP
英文“Floating Point”的简称,也就是“浮点操作”。FP16指的是16位的浮点操作,FP32对应32位的浮点操作,依此类推。
4. OpenGL
OpenGL是个专业的3D程序接口,是一个功能强大,调用方便的底层3D图形库。OpenGL的前身是SGI公司为其图形工作站开发的IRIS GL。IRIS GL是一个工业标准的3D图形软件接口,功能虽然强大但是移植性不好,于是SGI公司便在IRIS GL的基础上开发了OpenGL。OpenGL的英文全称是“Open Graphics Library”,顾名思义,OpenGL便是“开放的图形程序接口”。虽然DirectX在家用市场全面领先,但在专业高端绘图领域,OpenGL是不能被取代的主角。
显卡时好时坏是怎么回事?
我是英雄连的老玩家了 我可以告诉你 英雄连抵抗前线要求的比一代高 所以英雄连原版 你可以把分辨率调到*768 这个样子 开画面啊 那可以开高点 要想跑的顺 最好把 水面反射可低 地形开中得 摸组可以开高没问题的 阴影啊 你想开就开 那个我不太 在意 那其他的就看你的想法办了 最好开成中得画面 就行了 摸组清晰度可以开最高
玩呢 那可太...............卡了那游戏可实在........... LZ我跟你说 玩是当然可以玩 效果开底点也行 但是就是不能玩的很顺卡是当然的 LZ最好不要玩 那东西 玩的话 会 让你眼晕的
AMD Radeon HD 6700 Series 显卡支持2k显示屏吗?
可能出现了以下故障:
(1)显卡接触不良故障:
显卡接触不良通常会引起无法开机且有报警声或系统不稳定死机等故障。造成显卡接触不良的原因主要是显卡金手指被氧化、灰尘、显卡品质差或机箱挡板问题等。对于金手指被氧化造成的接触不良,可以使用橡皮擦拭金手指来解决;对于灰尘引起的接触不良,一般清除灰尘后即可解决;对于硬件品质造成的接触不良,通常通过替换法来检测,一般用更换显卡来解决;对于机箱挡板问题造成的接触不良,通常显卡无法完全插入显卡插槽,可用更换机箱来排除。
(2)兼容性问题:
兼容性故障通常会引起电脑无法开机且报警声、系统不稳定死机或屏幕出现异常杂点等故障现象。显卡兼容性故障一般发生在电脑刚装机或进行升级后,多见于主板与显卡的不兼容或主板插槽与显卡金手指不能完全接触。显卡兼容性故障通常用替换法进行检测,一般用更换显卡来排除故障。
(3)显卡元器件损坏故障:
显卡元器件损坏故障通常会造成电脑无法开机、系统不稳定死机、花屏等故障现象。显卡元器件损坏一般包括显卡芯片损坏、显卡BIOS损坏、显存损坏、显卡电容损坏或场效应管损坏等。对于显卡元器件损坏故障一般需要仔细测量显卡电路中的各个信号来判断损坏的元器件,找到损坏的元器件后,进行更换即可。
(4)显卡过热故障:
由于显卡芯片在工作时会产生大量的热量,因此需要有比较好的散热条件,如果散热风扇损坏将导致显卡过热无法正常工作。显卡过热故障通常会造成系统不稳定死机、花屏等故障现象。出现显卡过热只要更换散热风扇即可。
(5)显卡驱动程序故障:
显卡驱动程序故障通常会造成系统不稳定死机、花屏、文字图像显卡不完全等故障现象。显卡驱动程序故障主要包括显卡驱动程序丢失、显卡驱动程序与系统不兼容、显卡驱动程序损坏、无法安装显卡驱动程序等。对于显卡驱动程序故障一般首先进入“设备管理器”查看是否有显卡的驱动程序,如果没有,重新安装即可。如果有,但显卡驱动程序上有“!”,说明显卡驱动程序没有安装好、驱动程序版本不对、驱动程序与系统不兼容等。一般删除显卡驱动程序重新安装,如果安装后还有“!”,可以下载新版的驱动程序安装。如果无法安装显卡驱动程序,一般是驱动程序有问题或注册表有问题。
(6)CMOS设置故障:
CMOS设置故障是由于CMOS中显示相关选项设置错误引起的故障。常见CMOS设置故障主要包括:集成显卡的主板,CMOS中的显卡屏蔽选项设置错误;如“P Driving Control”选项设置错误(一般应为“AUTO”),“P Aperture Size”选项设置错误:“FAST Write Supported”选项设置错误等。CMOS设置错误一般用载入默认BIOS值修改即可。
(7)显卡超频问题:
显卡超频问题是指使用时为了提高显卡的速度,提高显卡的工作频率而导致的电脑故障。出现问题后,可以将频率恢复到出厂默认设置即可。
如何计算cpu,主板,显卡,硬盘,内存条功率?
HD6700 系列是支持2K分辨率的,2K显示器是指横向分辨率达到了2000以上HD6700分辨率 最高2560×1600,所以是能够支持2K显示器的。
现在的显卡几乎都支持2k,像8500gt 这种10多年前的老N卡 都能够支持 2k,2k并不是很稀奇的事,分辨率当然越高就越清晰。
玩游戏的话支持和好的体验是两码事,比如HD6700系列玩lol 1440*900分辨率下可以达到150多fps,但是你用2k显示器调到2560*1600只有不到40左右的FPS。支持它是可以达到的,但是以这个显卡的技术就算达到了,玩游戏也不会有太好的体验,哪怕你看**都是一卡一卡的,十分不流畅。如果要调到2K分辨率要玩游戏看蓝光或2K**的话 起码得用HD7850以上的显卡,7850还算好显卡,但是调到2K的话 也只能勉强。HD6700这种显卡调到2K看**是绝对不会顺畅的,建议起码HD7850以上。
如果你2K主玩游戏的话建议 ?预算低点:GTX750Ti或者760 ?预算高点:GTX960或者GTX980之间 ?钱不是问题:GTX980Ti或者GTX1080Ti(泰坦性价比不高,真是富豪也别买,据说1080Ti可以秒泰坦全家) ?
如果你 主看**偶尔玩玩游戏建议 : 预算低点:HD7850 ? 预算高点:R9 280x ?钱不是问题:RX 480x
实在想自己选,建议看**A卡,玩游戏就N卡。A卡比较注重画面的细节和色彩,可以自己调整画面的各种数据,看**的体验和感受也比N卡要好的多。 。。。。。 N卡对大部分游戏都很兼容,特别是很多同价位N卡本身从数据看还不如A卡,但游戏就是比A卡FPS更高玩的更流畅,是因为N卡本身对游戏的优化就十分的好再加上N卡驱动对游戏都会时常进行最新的优化出了问题驱动也会很快更新来解决,再加上N卡的独家 物理引擎physx对游戏的提升十分高,还有就是N卡对DX12最低微星 N650 就支持了 而A卡要 HD7790,N650也就是GTX650,450元就可以买到, 而 HD7790 中国根本就没发售过 想支持DX12就得买最低 R7 260X ? 750元。
DX12就是微软Windows10 系统对显卡性能提升的一款支件(Win7 Dx11,Vista Dx10,Xp dx9),这款系统支件对显卡的提升无比巨大,打个比喻在没有Dx的情况下 FPS要低 一半多,所以一般玩游戏的都没有谁去买一堆好装备去装Mac系统。Mac系统对很多游戏都有Mac版本的。很多买了苹果电脑的后来都重装Windows系统,或者双系统一起。
归根结底,要玩游戏N卡的性价比非常高 10年前的9800gt都可以玩GTA5,可以自己想想。 看**A卡更强大,即使是看蓝光用一个一般的A卡也不会有丝毫卡顿,对的处理能力十分强大。____________________________一个专注于游戏的优化和流畅,一个专注于和图像的细节处理能力。
NVIDIA显卡的所有型号!谢谢!
1、CPU功率计算。
P=a×b×F×V2(注意,公式中的“2”是指工作电压的平方)中a、b是与CPU架构有关的系数(常量),F是CPU工作频率,V是CPU工作电压,由此可以推出:CPU当前功率=CPU默认功率×(当前频率/默认频率)×(当前电压/默认电压)2。
2、主板:现在新的主板自身消耗功率并不大,功率大都为20--30W;集成主板稍微高点在30-40W。
3、显卡:显卡是计算机的图形处理中心,相同型号的显卡,功率实际上也有很大的差异(同上,也是热量设计功耗)。
Nvidia GF 6600 30-50W、Nvidia GF 6800: 40-70W、Nvidia GF 7600 :35W、Nvidia GF 7800: 60-90W、Nvidia GF 7900: 60-90W。
4、硬盘:硬盘容量 = 柱面数(表示每面盘面上有几条磁道,一般总数是) × 磁头数(表示盘面数) × 扇区数(表示每条磁道有几个扇区,一般总数是64)× 扇区(存储基本单元,大小一般为512B/4KB)。
5、内存条功率:内存DDR 5-10W,内存DDR2 2.5-5W。
扩展资料:
部分外设参考功率:
1、电脑的音箱等外设的功率可按20-40W计算。
2、显示器参考功率:
普通CRT:15CRT:60W ,17CRT:80W ,19CRT:105W。
液晶 15LCD:23-35W 17LCD:30-48W;19LCD:32-50W 22LCD:45-60W
24LCD:78W。
电脑显卡作用是什么
1995年 创新起步的NV1
1993年,NVIDIA公司成立在美国Santa Clara,第一款产品是2年后推出的以NV1图形芯片为核心的多媒体解决方案,之所以这么说是因为这张PCI总线的显卡还集成了声音功能甚至是游戏机手柄连接。可以看到NVIDIA在3D图形行业开始之初就表现出了不拘于传统的风格,并相当有野心的想成为全方位的PC平台霸主。可惜的是NV1方案并不成功,最为天真的做法是欲自立标准摒弃业内通用的3角形描绘3D建模而转用四边形,并且和OpenGL及D3D均不兼容,即使有声名显赫的Diamond选用了它出品了Diamond Edge 3D系列显示卡,但基本上没有在行业内形成什么影响。
Diamond NV1
NVIDIA在NV1后继续尝试开发过NV2这款2D+3D整合的PCI总线图形芯片,但因为资金和一些其他原因,它们都没有以成品面貌出现在市场上,也许在我们现在的观点看,多年时间无法推出成功产品的一家技术公司,怎样能够得到投资方的认可继续烧钱在硬件研发上呢?不过NVIDIA做到了,这个阶段NVIDIA无疑过的很艰难,但终究是挺了过来。
这一时期PC图形硬件市场还属战国时代,以研发芯片为主的厂商包括ATI、3dfx、3Dlabs、Rendition、S3、Cirrus Logic、Trident等,其中的S3如日中天,其他厂商也都实力不弱,更有新贵3dfx已经抓住机遇成为PC 3D新的领袖。1995年,3dfx发布了公司创立以来的第一个产品Voodoo,并赢得了广泛的欢迎,Rendition在稍微早些于3dfx的时候也发布了V1000芯片,而且已经被几大显卡厂家用,销售量最后直逼Voodoo,成为第二家受欢迎的产品。这一切对于还显稚嫩的NVIDIA来说相当严峻,它需要在新产品上做出突破。
P时代抓住机遇 Riva系帝国初成
● 1998年 Riva128的锋芒杀气
年,P作为PC平台显卡接口出现在主板上,它专为应付对带宽需求越来越高的3D加速卡,这项技术变革对所有的图形硬件厂商都是一个机会,也是一个挑战。NVIDIA终于找到了快速上升的机会,它推出了芯片代号为NV3的P 3D加速卡,著名的Riva128!
ASUS Riva128
Riva128是当时市场上唯一一款真正具有3D加速能力的2D+3D P显卡,相对于当时主流游戏应用的PCI Voodoo纯3D加速+2D显卡的组合模式,Riva128更简单、更便宜,更具规模化成产降低成本的优势。虽然3dfx的Voodoo凭借着当时先入为主的游戏厂商支持和更快的实际速度在玩家群中更有影响力,但Riva128的出现给Voodoo带来了很大的威胁,并成为出货量方面的赢家,Diamond、Hercules及STB等一系老牌显卡劲旅生产了大量基于Riva128的显卡供给OEM和零售市场,NVIDIA积累了自己的第一桶金,后劲越来越足。19年冬季结束时,这款产品的改进版Riva128ZX问世,它提升了本地内存容量,并支持P 2X。
Riva128ZX相对Riva128来说,并没有特别重大的改进,nVIDIA只是在告诉大家它有能力在6个月内对产品进行更新换代。新的芯片依然由台湾的TSMC来生产。从那个时候起TSMC就一直是NVIDIA放在第一位置的芯片制造合作厂商。
● 1999年 Riva TNT2再接再厉
之后的Riva TNT曾在前期公关宣传上做足文章,NVIDIA宣称它将会Voodoo 2 SLI的终结者,但最后的结果是仅比Voodoo Banshee快一点而已,超越Voodoo 2 SLI成为笑谈。产生如此后果的原因是Riva TNT芯片的0.35微米工艺限制和核心频率的提升,从初始设计的125MHz最终减低到90MHz出货。
DIAMOND Riva TNT2
1999年2月,nVIDIA对外终于发布了这一时期的终结者Riva TNT2,它是Riva TNT的改进版,可以工作在较高的频率同时还支持一些新的特征:32MB本地内存及P 4X等。nVIDIA直接将Voodoo 3作为竞争对手。Riva TNT2及后续的高频各个版本成功拿下了NVIDA第一个3D性能王冠,配合它的还有因非常成熟的驱动程序,NVIDIA产品从开始就专注于OpenGL API支持,这意味着它们在当时高高在上的Quake3系列游戏中表现极佳,赢得大量玩家的拥戴。
Riva TNT2的另一个重要意义是NVIDIA学会了更好的规划产品线,覆盖更全面的市场,99年当年夏天,更多版本的TNT2显卡在市场销售了,包括Riva TNT2 ULTRA、TNT2标准版、TNT2 M64、TNT2 VANTA问世,Voodoo3及ATI的Rage 128系列已经在所有领域被彻底打垮。
向GPU迈进 Geforce革了传统图形芯片的命
● 硬件光影与变换!Geforce 256
Riva TNT2的下一代是NV10,它除了具有TNT2的高频高速特征之外,更革命性的引入具有转换和光照处理几何引擎(T&L),它分担CPU在3D计算中的几何运算工作,让显示芯片不在只是像素填充机和三角形生成器,硬件T&L间接改善游戏流畅程度,并远远领先于同期其他产品的设计思路。1999年8月,Geforce 256问世,NVIDIA舍弃了帮自己打下江山的Riva品牌,新启用的Geforce强调力量并沿用至今,并衍生出驱动品牌Forceware及芯片组品牌nForce!
Geforce 256的真实水平和发布前的预热相符,但它的核心频率也相对较低,只有120MHz,在当时强调填充率的游戏编程环境下有时相对高频版Riva TNT2的领先距离并不大,不过硬件T&L技术仍然表现出了它的价值,Geforce 256相对于它的频率水平可以说是相当快,尤其是配置DDR SDRAM本地内存的版本。
Creative Geforce 256 SDR
Geforce 256显卡的出色表现,NVIDIA强大的技术实力得到全面释放,这块显卡是真正的全面领先型产品,而不是靠16bit色和32bit色的区域优势或者是单纯依赖特定的3D API支持,正是Geforce 256,也宣告了其他厂商只能作为追赶者的角色,ATI甚至乱了阵脚推出Rage MAXX这样的双芯片短命怪物。
● 攀上巅峰 Geforce 2 GTS
从今天的角度看,才能发现2000年时S3、3dfx两家公司的产品已经是最后一搏,它们是S3 Sage 2000和Voodoo 5。可惜NVIDIA即迅速推出了NV15,也就是Geforce2 GTS显卡,彻底压制了所有竞争者(当时ATI在缓慢的研发R200)。
Canopus Geforce 2 GTS
Geforce2 GTS显卡的3D性能是Geforce 256的150%以上,标配DDR SDRAM类型的本地内存,以32MB容量为标配,它在技术上和Geforce 256同出一脉,类似于之前的Riva TNT2相对于Riva TNT。后续发布的Geforce 2 Ultra则继续巩固了NVIDIA在3D加速上的王者地位,更晚些时候的Geforce 2 PRO则把这款产品逐渐推入主流,对抗后期之秀Radeon LE。
2000年中期,nVIDIA公司还推出了在Geforce2 GTS的简化版本Geforce2 MX系列显卡雄踞底端。
● Shader初体验 Geforce 3
进入DirectX 8时代,微软的D3D成为了3D游戏的主流API,从这个版本开始,引入了着色器概念(Shader),Geforce 3是第一款支持DirectX 8完整特性的3D加速卡,NVIDIA此时已经彻底击败并收购了3dfx,浮现出来的新对手是老牌加拿大厂商ATI。ATI在OEM市场拥有非常丰富的经验和,在零售型产品开发上也具有雄厚实力,之后的几个年头,它一直力图和NVIDIA抗衡以平分天下,并在短暂的时间里实现过这个目标。
Hercules Geforce 3
核心代号为NV20的Geforce 3拥有全新的PixelShader和VertexShader硬件逻辑,真正支持像素和顶点的可编程,这是硬件T&L之后PC图形技术的又一重大飞跃,3D的视觉体验也因此向接近真实迈进了一大步,波光粼粼的水面是那个时期用于演示Shader能力的典型DEMO,相比之下DirectX 7绘制的水面效果就单调得多。NV20还加入了一系列的先进技术,例如光速显存交错寻址控制器(lightspeed crossbar memory controller)、Z轴无损压缩(Z-compression)和Z轴遮挡筛选(Z-occlusion culling)等,主要用于改善内存带宽。Geforce 3在大约半年不到的时间内,主宰了高端市场,直到迟了半代的ATI Radeon 8500的出现,但Geforce 3 Ti500仍然能够和Radeon 8500战平。Geforce 4盛极一时和FX一代的迷茫
● 销量之王 Geforce 4 MX440
面对同样DirectX 8级别、支持PixelShader与VertexShader并还融入特色TRUFORM、SMARTSHADER、SMOOTHVISION及HYPER-Z II等新技术的Radeon 8500,先手的Geforce 3无法形成压制,Geforce 4 Ti迅速出现接替前者成为无可争辩的DX8显卡性能之王。但Geforce 4系列真正销量最大的却是核心架构和Geforce 2类似,仍处于DirectX 7时代水平的Geforce 4 MX440及后来的Geforce 4 MX4000。
Gainward Geforce 4 MX440
Geforce 4 MX440技术成熟、产品廉价,ATI的Radeon 7500系列对其毫无办法,甚至在DirectX 9产品问世许久后市场销量最高的仍然是隔代老产品的Geforce 4 MX440,其成功可见一斑。这款产品在技术上法善可陈,成功的原因可归结为成本控制、时机选择和价格卡位准确,毕竟DirectX 8应用存在期较短,软件还处于对Shader编程的摸索期,DX7级别游戏仍旧是主流应用,而DirectX9又呼之欲出,Geforce 4 MX440在入门级系统显现出来的高性价比还是非常明显。此外,这个时期也是NVIDIA在驱动程序研发上最为强盛的阶段。
● 销量之王二世 Geforce FX 5200
和DirectX 9的完美契合及务实的硬件配置成就了ATI Radeon 00一代产品的翻身一役,2002年底Radeon 00无可争议地坐上了显卡性能王者的宝座,重塑ATI与nVIDIA决战的信心,NVIDIA则遭受了自Riva TNT2成功以来首次如此严重的失败:Geforce FX系列的核心架构偏离DirectX 9的应用方向,Geforce FX 5800孤芳自赏的使用准4*2模式管线和128bit GDDR2本地内存和Radeon 00的标准8*1+256bit DDR本地内存抗衡,技术领先的形象遇到重创。
NVIDIA Geforce 5200
尽管Geforce FX 5800(NV30)及中端的FX5600并不算成功,但是面向入门级市场的Geforce FX 5200堪称神奇,它简直就是Geforce 4 MX440的复刻版本,成功拿下原本Geforce 4 MX440占据的市场,牢牢占据国内独立型显卡的最低配区域,甚至在5年后的今天,仍在市场中大量出货。
Geforce FX 5200大幅度精简于本身就并不快的Geforce FX 5800,在发布当时的3D加速能力就极为有限,5年后的今天它却仍能活跃在DIY市场,这只能归结于P产品的最后阵地+超低价格的解决方案了,毕竟在现在的标准看,Geforce FX 5200已经和一款2D显卡无异。
借PCI-E新风 夺回王座与SLI重生
● 王者回归 Geforce 6800 Ultra
经过Geforce FX 5900对Radeon 9800的缓冲, 2004年4月,NVIDA重振旗鼓的NV40携最新API DirectX 9.0c以及PCI Express总线杀到。2004年是PCI Express标准大普及的一年。i915P/i925X和nForce 4系列芯片组的迅速普及让PCI Express有了广阔的市场,NVIDIA再次抓住了机会,依靠Geforce 6800 Ultra夺回3D性能头把交椅,ATI则显露技术研发颓势,Radeon X800系列没能支持最新API,也不具备类似NVIDIA SLI这样的双卡并行加速能力。
Geforce 6800 Ultra是nVIDIA NV40产品线中的旗舰,用0.13微米制造工艺,核心频率为400MHz和350MHz。作为顶级的显卡,内部的16条渲染管线、搭配256MB 256bit的GDDR3本地内存。这款显卡完整支持Shader Model 3.0的DirectX 9.0c,内置CineFX 3.0引擎,64位纹理混合过滤、32bit象素着色渲染精度一应俱全,带有第二代UltraShadow阴影渲染优化技术,此外还支持Color-compression(色彩压缩)和Z-compression(Z压缩)压缩技术。NVIDIA深刻吸取了Geforce FX系列过于自我、冒进的技术路线,Geforce 6800的NV40和微软D3D规格标准吻合度极高,其优秀的硬件架构得到了充分的发挥。
Leadtek Geforce 6800 Ultra
利用PCI Express总线构架起来的NVIDIA SLI技术在Geforce 6800 Ultra上被首次引入,这种多GPU并行技术能够有效提升系统的3D加速能力,基本能实现单个显卡175%以上的3D速度,借Voodoo SLI早年威名,用户接受度非常高,即使后来ATI如法炮制了Crossfire技术,但仍不如SLI知名度高、应用广泛。
● 双轨并行 Geforce 6600
P和PCI Express两种接口的产品都很流行,是Geforce 6中档主力Geforce 6的最大市场特色。虽然早期上市的旗舰级Geforce 6800依然用了P界面,但定位稍低,基于原生PCI Express总线芯片的Geforce 6600随后就马上出现在零售市场,使得PCI Express显卡的普及有了飞跃。约1/4 NV40硬件规模的NV43核心GeForce 6600有两种规格:Geforce 6600 GT和Geforce 6600标准版。其中GT版性能更强,其核心频率达到500MHz,搭配GDDR3内存。而Geforce 6600标版频率为300MHz,搭配GDDR2。
Chaintech Geforce 6600 GT
提前放弃了NV3X一代的Geforce FX中端显卡,GeForce 6600得到了空前的支持,它是NVIDIA产品线中罕见的频率限定宽松、内存搭配宽松产品,下游制造商能动性很高,这种政策几乎照搬了Radeon 9550的成功模式,事实证明这样的思路确实很好。客观而言,Geforce 6系列确是成功的产品,ATI的Radeon X700无法与之抗横,NVIDIA
甚至在ATI发布的Crossfire技术后宣布Geforce 6600标准版可以驱动支持SLI技术,也有可能授权VIA的DualGFX芯片组支持SLI,对Geforce 6600的支持可谓空前。
● 核心系列更名 Geforce 7800 GTX
对DirectX 9.0c的支持上落后的ATI也在2005年末将自己的全线产品带入了ShaderModel 3.0时代。但遥遥领先的NVIDIA已经在2005年的夏天强势推出了自己的第二代DirectX 9.0c产品Geforce 7800 GTX,将在Geforce 6时代积累的优势进一步扩大,从这一代产品开始,GPU芯片核心代号改名为Gxx,其中对应Geforce 7800 GTX即是G70。
Albatron Geforce 7800 GTX
从产品技术角度看,Geforce 7更像Geforce 6的终极改进版,其硬件特征几乎没有发生变革,提升的是晶体管规模和GPU的计算能力。G70依然用了成熟的110nm工艺,在NV40的基础上增加了透明抗锯齿能诸多新技术,强大的Geforce 7800GTX占据了显卡性能之王半年之久。
领先一代 NVIDIA的进行时和将来时
● 威力双联装 Geforce 7950 GX2
2006年3月,随着Geforce 7900/7600系列显卡问世,G7X系列显示核心全部实现了90nm化。新的制造工艺使Geforce 7900/7600系列显卡制造成本和功耗降低、频率和性能提升。另外,Geforce 7900/7600都提供DualLink规格的DVI输出、支持2560x1600高分辨率显示,PureVideo的加速能力还通过Forceware程序得到性能提升。
NVIDIA还推出了顶级位置的的Quad SLI技术,这种技术用4枚GPU协同运作,最高能够实现32倍抗锯齿,提供了比双GPU SLI更高的图像质量和速度表现,为适应未来的高端超负荷运算奠定了基础。对应此技术,
NVIDIA5月发布了当时世界上最快单显卡的Geforce 7950 GX2。Geforce 7950 GX2显卡包含两个7900 GTX GPU,核心频率为500MHz,每个核心512MB GDDR3 1.2GHz的本地内存配置。该卡设计极为精良,基于SLI技术但可以在非SLI主板上正常使用,还能够使用两块Geforce 7950 GX2在支持SLI的主板上实现Quad SLI,搭建远超竞争对手的超级3D加速平台。
NVIDIA Geforce 7950 GX2
Geforce 7950 GX2是NVIDIA有史以来最华丽的技术能力演示,象征意义大于实用意义。
● 统一渲染新时代 Geforce 8800 GTX
06年11月发布、完整支持DirectX 10、彻底统一渲染架构风格的Geforce 8800 GTX是自Geforce 256以来NVIDIA受到关注最高的革命性产品,这款产品领先3D API标准3个月,领先比自己慢的竞争对手半年上市,创下了NVIDIA旗舰级3D显卡的销售记录。通过Geforce 8800 GTX,NVIDIA进入了一个近乎无对手的帝国时代,独立于3D图形硬件行业的巅峰。
ASUS Geforce 8800 GTX
Geforce 8800 GTX使用的GPU为G80,它提供对ShaderModel 4.0、NVIDIA Quantum Effects物理处理技术的支持,NVIDIA Lumenex引擎的引入则实现了128位浮点高动态范围光照和8倍多重取样抗锯齿效果。G80带来前所未有的设计:统一Shader架构(Unified Shader)带来强劲的性能,完全硬件支持DirectX10的各项先进特性,具备128个通用标量着色器的Geforce 8800 GTX具备万亿浮点处理能力(Teraflops of floating point),GigaThread逻辑支持数千个线程并行运行,有效调度所有着色器的均衡负载,最大化3D计算,对DX9和DX10级别的3D应用都有理论上趋于完美的适应性。Geforce 8800 GTX还支持384bit的内存位宽,搭配将近2GHz频率的768MB本地内存,即使在30英寸LCD上游戏也不会遭遇本地内存容量瓶颈。
Geforce 8800 Ultra出现后,Geforce 8800 Ultra已经不是最快速的3D加速卡,但他问世之初时的震撼仍然让人无法忘却,超上代旗舰100%的加速能力,风驰电掣的游戏速度,甚至还有部分场合代替CPU的通用计算能力,NVIDIA已经在领先的道路上越走越远。
● 平民+DX10 Geforce 8600 GT
ATI、NVIDIA双雄并进的趋势持续了7年之后,被AMD收购后的AMD-ATI在产品推出速度上显现颓势,相反NVIDIA则具有强悍的创新力和生命力。在领先竞争对手半年时间推出首款DircectX 10的顶级3D加速卡Geforce 8800之后,NVIDIA于4月17日又把Geforce 8产品线扩充完整,Geforce 8600和Geforce 8500两个显卡系列延伸到主流市场。
Geforce 8600 GT以灵活宽松的产品规格配置、合理的价格、均衡的DX9/DX10应用加速能力、新锐的硬件解码逻辑已经成为新一代中端主流独立显卡的代表型产品,和竞争对手的Radeon HD 2600 PRO/XT相比,Geforce 8600 GT在相同档次频率设定下速度更快、驱动表现更稳定,市场可选余地也更大。
Geforce 8600 GT使用的GPU为G84-300,由台基电(TSMC)使用80nm工艺制造,G80革命性的可以维持最多4096个线程的GigaThread逻辑部分被完全保留,并且其内部还集成了G80不具备的新版Video Processor和H.264 BSP引擎,强化了解码能力。Geforce G84-300 GPU基本上是G80硬件指标的25%。它是一款32通用着色器的GPU,实际上它就是16SPs*2的配置。G84内的32个通用标量着色器频率和ROP标准频率的675MHz异步运行,比例大致在2.16:1,它的内存控制器仅为128bit位宽,远较G80的384bit/320bit低。
NVIDIA Geforce 8600 GT
NVIDIA的GPU在NV4x一代开始便引入解码技术的PureVideo HD,并在06年初增加了对H.264编码格式的解码支持。PureVideo HD已经能有效缓解CPU的压力,只是解码过程仍然需要CPU很高的参与度,不能彻底释放CPU负载。PureVideo HD最新版本现在在NVIDIA G84和G86 GPU上被引入,它的最大改进是:解码可以100%交由GPU计算!CPU彻底解放。
G7X和G80 GPU的PureVideo HD特性依靠内部的VP(VideoProcessor)提供,在对进行解码时,能够完成除了Bitstream处理和InverseTransform之外的其它操作,包括对CPU能力要求不低的De-Blocking操作。但以H,264编码的高码率影片播放时,即使CPU被PureVideo HD从De-Blocking解放出来,Bitstream处理仍旧给CPU沉重的压力。
G84 GPU在内部设计上大大增强了解码逻辑,除了VP版本更新并加强了性能之外,还新增了针对H.264解码的BSP(Bitstream Processor)引擎,解决原来G7X和G80 GPU的PureVideo HD仍需CPU进行Bitstream处理的问题,彻底接手解码的所有工作。以G84GPU为核心的Geforce 8600系列显卡,现在能够基本不需CPU计算能力的支持,就能流畅播放高码率H.264压缩格式的,BSP支持CABAC/CAVLC两种方式的Bitstream处理,即使使用的是低速CPU,CPU占用率也可以保持在40%以下,系统响应度和播放顺畅度都能够保证。
真DirectX 10时代来临 性能证明一切
●8系在继续 9系在延续
NVIDIA在第一代DirectX 10产品Geforce 8000系列上大获全胜,无论从低端还是高端都霸占着绝对的市场占有率。转眼至2007年11月,AMD-ATI为了挽回第一代产品上丢失的阵地,准备用第二代DirectX 10产品——Radeon HD 3000系列反扑。不过NVIDIA凭借在第一代DirectX 10产品上赢得的时间,早于Radeon HD 3000系列一周发布,不过NVIDIA并不像放弃Geforce 8000系列这个金字招牌,虽然使用了全新设计的G92核心,但是却为其命名Geforce 8800GT,它的出现也预示着新一轮GPU之争的开始。
众所周知,Geforce 8800GT用了G92-270核心,这款核心在技术支持上可以看做是延续G8X,但是在核心制程和性能上都相对G8X有了长足进步。首先,G92核心为了在较小的面积上集成更多功能,其用了先进的65nm制程并包含7.54亿晶体管,而且到目前为止G92仍然保持着单核晶体管之最。其次,作为NVIDIA新一代的中高端产品,首次加入了BSP技术和VP2引擎,从此解决NVIDIA中高端产品播放能力欠佳的遗憾。
Geforce 8800GT
Geforce 8800GT使用的G92-270核心拥有112个流处理器和16个光栅处理器,3D性能突出尤其是在DirectX 10游戏中的表现折服很多用户。不过NVIDIA此次发布的新一代产品并不是最强设计,因为G92核心硬件全规格为128个流处理器和16个光栅处理器。但是面对随后一周对手发布的Radeon HD 3870和Radeon HD 3850,Geforce 8800GT还是表现出了游刃有余的实力。
●8800再升级 全规格G92出击
G92在Geforce 8800GT上成功之后,NVIDIA看到G92核心的巨大潜力并随即推出了Geforce 8800GTS 512MB版。虽然在型号上与早期用G80核心的Geforce 8800GTS 640MB/320MB重名,但是在规格、性能上Geforce 8800GTS 512MB却有了长足的进步,而且一经发布便问鼎最强单卡称号。值得一提的是,相对上一代顶级产品Geforce 8800 Ultra来说,Geforce 8800GTS 512MB仅为Geforce 8800 Ultra的一半不到,性能却在各项测试中打平甚至超越。
Geforce 8800GTS
Geforce 8800GTS 512MB使用了台积电用65nm工艺制造的G92-400核心,其拥有全规格设计的128个流处理器和16个光栅处理器。虽然Geforce 8800GT与其仅差16个流处理器,但是由于Geforce 8800GTS 512MB默认高频,从根本上拉开产品间性能并确定高端形象。
Geforce 8800GTS 512MB和Geforce 8800GT都用相同的P393公版设计,外观的不同主要是散热器升级为双槽高效散热器,显卡供电模组变为3+1相,这些设计都是为了解决由于高频等因素带来的大功耗和高温问题。
划时代的9系列 全面进军DX10
●千元重地 9600GT全力把守
如果说Geforce 8800GTS 512MB和Geforce 8800GT是G9X较早的应用,那么在2008年2月21日亮相的Geforce 9600GT则是Geforce 9000系列真正的开始。
正如上文所提及,用G9X核心的产品2007年发布很多,例如使用G92核心的新Geforce 8800系列和G98核心的新Geforce 8400GS,而用G9X核心并且命名归属Geforce 9000系列Geforce 9600GT是第一款。而且值得一提的是,此次Geforce 9000系列的全新开端与以往NVIDIA惯用的从高到低发布顺序不同,型号中百位数为“6”这很明显是NVIDIA定位中端的产品。NVIDIA此次用从中端开始发布的主要原因也许有两点,其一 是行业竞争对手给NVIDIA形成的压力越来越小,其二是NVIDIA在这个段位上确实缺少一款可灵活操作的长线产品。
Geforce 9600GT用了NVIDIA全新设计的65nm制程G94核心,其原生64个流处理器和16个光栅处理器。虽然从技术指标和着色器数量上看,G94核心很像是G92核心缩减64个流处理器而得,但是从核心面积及核心晶体管数上可以证明G94核心为全新设计产物,并非G92瑕疵品屏蔽规格而得。
Geforce 9600GT
由于在规格、成本上的优势,NVIDIA为其精准的定位于千元价格,虽然上市之初价格虚高但经过3个月时间的洗礼,加上生产工艺和制造成本的进一步优化,目前很多非公版Geforce 9600GT的价格已经跌破900元大关,并成为很多注重性价比尤其性能方面用户的首选。
不得不说的是,目前Geforce 9600GT和Geforce 8800GT在性能和价格上有很多重合的部分,但是很明显NVIDIA和所有显卡厂商都大力推崇Geforce 9600GT,这主要是因为在不久的将来Geforce 8800GT将恢复正身为Geforce 9800GT,与Geforce 9600GT彻底拉开档次,并进一步完善整条Geforce 9000系列布线。
●最强单卡 双核的“心”
NVIDIA在Geforce 9000系列上的第二炮是目前旗舰产品——Geforce 9800GX2,这款产品在3月18日发布后便夺回了Radeon HD 3870x2刚刚获得的最强单卡称号。与AMD-ATI在顶级产品上的设计不谋而合,都是用了单卡双核的设计,而且设计、技术等成熟度上NVIDIA要领先一筹,毕竟上NVIDIA在Geforce 7000系列时代设计了Geforce 7950GX2这款双核产品。
Geforce 9800GX2
Geforce 9800GTX
Geforce GT200
Geforce 9800GTX+
GeForce GTX280
电脑显卡的用途是将计算机系统所需要的显示信息进行转换驱动显示器,并向显示器提供逐行或隔行扫描信号,控制显示器的正确显示,是连接显示器和个人计算机主板的重要组件,是“人机对话”的重要设备之一。
显卡主要负责把主机向显示器发出的显示信号转化为一般电器信号,使得显示器能明白个人计算机在让它做什么。显卡的主要芯片叫“显示芯片”,是显卡的主要处理单元。
我们使用的显卡都带有3D画面运算和图形加速功能,所以也叫做“图形加速卡”或“3D加速卡”。
扩展资料:
显卡的分类
显卡分为集成显卡、独立显卡、核芯显卡。
1、集成显卡。
集成显卡是将显示芯片、显存及其相关电路都做在主板上,与主板融为一体;集成显卡的显示芯片有单独的,但大部分都集成在主板的北桥芯片中。
2、独立显卡。
独立显卡是指将显示芯片、显存及其相关电路单独做在一块电路板上,自成一体而作为一块独立的板卡存在,它需占用主板的扩展插槽(ISA、PCI、P或PCI-E)。
3、核芯显卡。
核芯显卡是将图形核心与处理核心整合在同一块基板上,构成一颗完整的处理器。智能处理器架构这种设计上的整合大大缩减了处理核心、图形核心、内存及内存控制器间的数据周转时间,有效提升处理效能并大幅降低芯片组整体功耗。
百度百科-显卡